MATERIALS CENTER LEOBEN FORSCHUNG GMBH

#### We Innovate Materials

# Scanning Electron Microscopy

Material and Damage Investigation 3D Microstructure and Contour Analysis High Resolution Scanning Electron Spectroscopy Precise Chemical and Structural Analysis Focus Ion Beam Micromachining Insitu - Micromechanical Investigations Insitu - Temperatur Transformation Analytics

Insitu - Temperatur Transformation Analytics

Ex-/Insitu - AFM-Measurements

# COMPETENCE & RELIABILITY

ZEISS

# Material and Damage Investigation



High resolution examination of aterial sections, surfaces or fracture surfaces incl. local chemical and crystallographic analysis

Contact:







DI Petri Prevedel T: +43-676 848883 108

Dr. Angelika Spalek T: +43-676 848883 201 Our Focus / Competences:

- surface analyses, fracture surface analyses, damage analyses
- analysis of large or difficult-to-clean components (up to 3kg), from microsections up to microelectronic components
- SEM analysis of non-conductive components without additional vapor deposition (e.g. ceramic components, metal/plastic composites)
- local chemical and crystallographic analyses

#### **3D Microstructure and Contour Analysis**



2.1089mm 2.1089mm .5098mm 2.1089mm

High resolution 3-dimensional examination and measurement of contours or structural components

Contact:



Bernhard Sartory



Dr. Angelika Spalek T+43-676 848883 201 T: +43-676 848883 129

Our Focus / Competences:

- 3D topography of contours, damage, etc. incl. measurement in the mm to sub-µm range
- 3D tomography of microstructural components by the Slive&View method incl. measurement of local chemistry and structure
- different electron and ion contrasts, EBSD crystal information measurement, 3D chemical element distributions and depth profiles (EDX, EBSD and FIB-SIMS (TOF))

# High Resolution Scanning Electron Spectroscopy



High resolution microstructure characterization



Bernhard Sartory T: +43-676 848883 129



Dr. Angelika Spalek T +43-676 848883 201 Our Focus / Competences:

- high resolution microstructure characterization with resolutions up to 1,000,000x
- different electron and ion contrasts, EBSD crystal information measurement
- measurement of the crystal structure by EBSD from the cm range down to 20-30nm small structures
- measurement of the local chemical • composition as well as element distributions and particle analyses (EDX, WDX, RFA, FIB-SIMS (TOF))

We Innovate Materials

Contact:



#### Precise Chemical and Structural Analysis



Precise chemical and structural analysis of finest structural elements down to a few 10nm in size

Contact:





Bernhard Sartory T: +43-676 848883 129 Dr. Stefan Marsoner T: +43-676 848883 102 Our Focus / Competences:

- precise chemical analysis using EDX, WDX and XRF
- high energy resolution with detection limits of 50-100 ppm
- trace element analyses down to detection limits of 10ppm
- EBSD measurements of grains less than 10nm in size for identification of microstructure or crystal structure
- FIB-SIMS (TOF) surface measurements or depth profiles with a lateral resolution of a few nanometers from main elements to trace analysis

### Focused Ion Beam Micromachining



Specimen preparation for micromechanical and microstructural investigations





Bernhard Sartory Dr T: +43-676 848883 129 T

Dr. Angelika Spalek T +43-676 848883 201 Our Focus / Competences:

- target preparation of thin foils for subsequent electron microscopy and transmission electron microscopy examinations (\*)
- target preparation of atom probe tips for subsequent atom probe examinations
- preparation of specimens for micromechanical testing of materials (e.g. thin films or microstructural components)

\*advanced TEM, APFIM analyses are performed in cooperation with research partners of the MCL

Contact:

#### Insitu - Micromechanical Investigations



Determination of micromechanical properties of microstructural components or layers

We Innovate Materials

Contact:



Bernhard Sartory T: +43-676 848883 129 Our Focus / Competences:

- hardness testing of individual microstructural fractions
- Insitu tensile test to observe local strain changes
- Insitu hardness testing using nanoindentor, recording flow curves and determination of Young's modulus
- Insitu static and cyclic material testing using the nanoindentor, determination of fracture and fatigue properties
- testing of shear resistances at interfaces (e.g. interface of a coating)

#### Insitu - Temperatur Transformation Analytics



High resolution documentation of the transformation kinetics of individual phase fractions

We Innovate Materials

Contact:



Bernhard Sartory T: +43-676 848883 129 Our Focus / Competences:

- Insitu heating and cooling experiments in the scanning electron microscope
- temperature range -180°C to 1045°C
- heating rates:-180°C to 400°C max. 20°C/min 250°C to 1045°C max. 250°/min
- temperature-dependent residual stress measurement on coatings
- analysis with various detectors (including EBSD)

#### Residual stress measurements using electron microscopy



Determination of global and local residual stresses on bulk materials and coatings with a lateral resolution of up to 10 nm

Contact:



Bernhard Sartory T: +43-676 848883 129

#### Our Focus / Competences:

- measurement of residual stresses and residual stress depth profiles of coatings with a depth resolution of up to 10 nm
- temperature-dependent residual stress measurements of microelectronic coatings between -180°C and +400°C
- 2D residual stress distributions of crystalline materials with an accuracy of a few 10nm incl. dislocation density analysis
- residual stress depth profiles on machined sheets, wires and other surfaces

#### Ex-/Insitu-AFM Measurements



and surface topographies

Contact:





 $1 \, \mu m$ 

Dr. Barbara Kosednar-Legenstein

Bernhard Sartory T: +43-676 848883 129 Our Focus / Competences:

- topography / roughness •
- KPFM for the determination of local electrical • properties of grains or microstructural components
- SThM for determination of thermal conductivity of • grains or microstructure components
- EBIC for determination of local electrical properties and short circuits/interruptions
- MFM for determination of local magnetic properties (e.g.: retained austenite)
- STM for visualization of atoms or atomic lattice •
- C-SPM for measuring electrical properties such as • resistance or conductivity

T+43-676 848883 160

## Service Offer

- SEM characterization of surfaces, fracture surfaces, damage and microsections incl. local chemical composition
- material investigations up to 3D microstructures, topography and tomography using SEM-FIB technology
- target preparation of TEM thin films, atom probe tips for further high-resolution investigations
- preparation of microsamples for mechanical in-situ experiments with different geometries (e.g. cuboids, cylinders or micro tensile specimens and cantilever)
- investigation of TEM samples in transmission mode (STEM) incl. chemical and crystallographic analysis
- insertion of small crack-like defects (in the sub-µm to µm range) to study the behavior of short cracks
- local and depth-resolved residual stress measurements
- high temperature investigations in combination with EBSD
- determination of physical parameters in combination with modules and analytics
- SPM-SEM in combination of different modules
- one to several days on-site training in electron microscopy, focused ion beam and correlative microscopy

# COMPETENCE & RELLA

#### Equipment

- scanning electron microscope with large sample chamber of Zeiss type EVO MA25<sup>®</sup> for the analysis of non-conductive and contaminated samples.
- NEU: Zweistrahlsystem, FE-REM (Zeiss CrossBeam© 550) inkl. Fokussierter Ionenstrahl (FIB)
- high resolution FE-SEM (Zeiss Gemini<sup>®</sup>-SEM 450) for imaging structures with a few nm and precise chemical analysis
- modular SEM (Zeiss CrossBeam<sup>®</sup>-SEM 340) with
  - tensile/compression/bending module
  - nanoindenter
  - heating/cryogenic module
  - AFM
- acquisition techniques and analytics: SE, BSD, STEM, secondary ion, InLens and EBSD detector, EDX, WDX, ED-XRF, WD-XRF, EBSD, STEM, TKD (Transmission EBSD), FIB-SIMS (TOF)
- ionslicer for sample preparation (flatmilling, cross sectioning)
- vapor deposition with different substances (graphite, platinum,...) for charge compensation and analysis of non-suffering samples

We

