

We Innovate Materials

Rasterelektronenmikroskopie

Werkstoff- und Schädigungsuntersuchung

3D-Gefüge und Konturanalysen

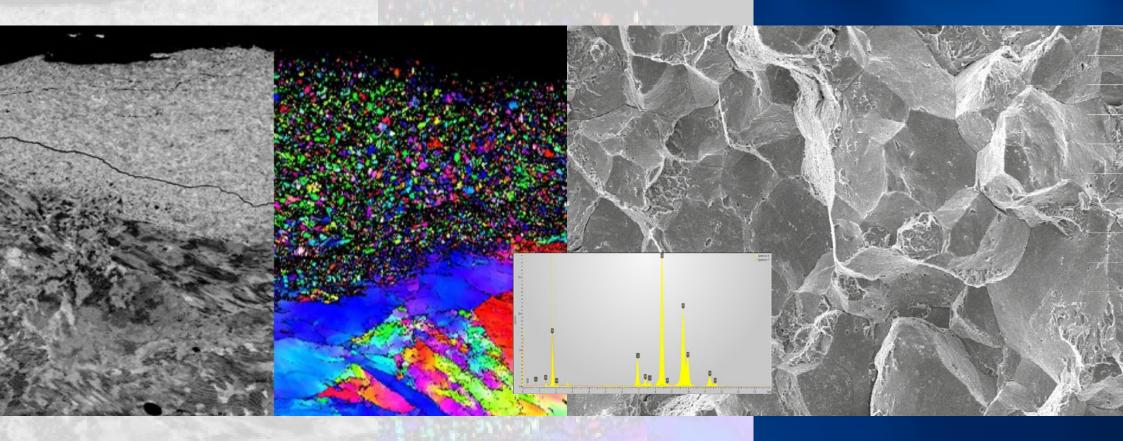
Hochauflösende Elektronenmikroskopie

Präzise chemische und strukturelle Analytik

Focus Ion Beam Micromachining

Insitu - Mikromechanische Untersuchungen

Insitu - Temperatur-Umwandlungsanalytik


Eigenspannungsmessungen mittels Elektronenmikroskopie

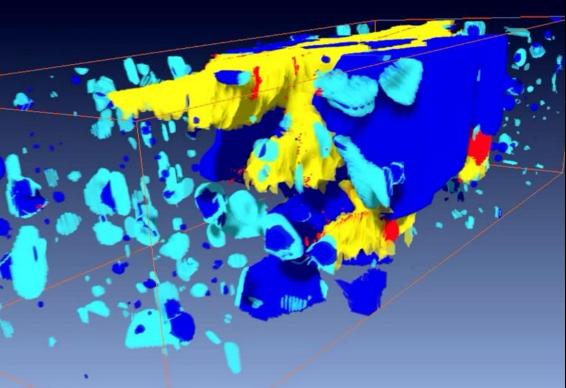
Ex-/Insitu - AFM-Messungen

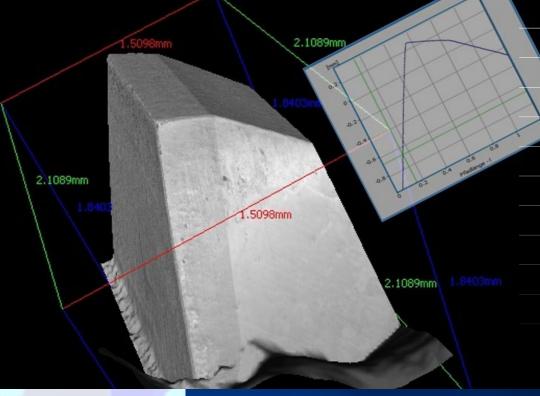
KOMPETENZ & ZUVERLÄSSIGKEIT

Werkstoff- und Schädigungsuntersuchung

Hochauflösende Untersuchung von Materialschliffen, Oberflächen oder Bruchflächen inkl. lokaler chemischer und kristallographischer Analyse

Ansprechpersonen




Dr. Angelika Spalek T +43-676 848883 201

Unsere Schwerpunkte / Kompetenzen

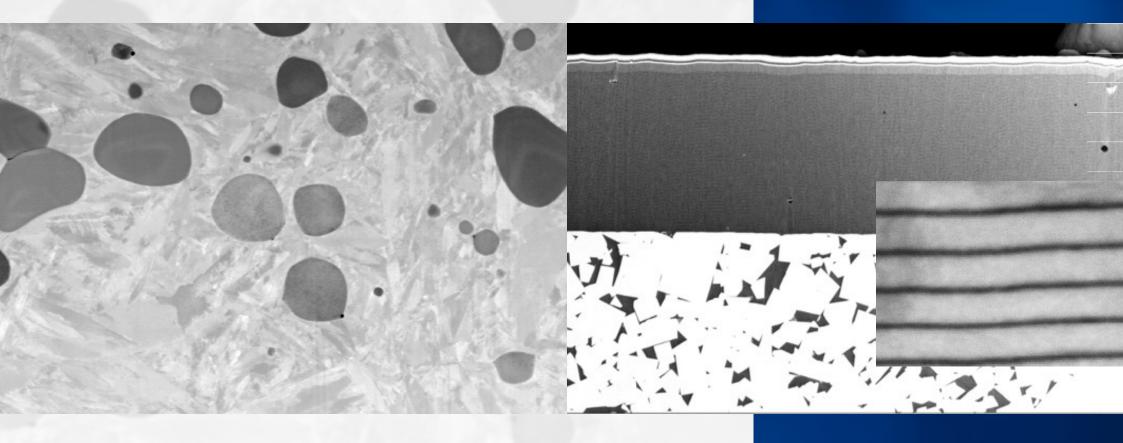
- Oberflächen-, Bruchflächenanalysen, Schadensanalysen
- Analyse von großen oder schwer zu reinigender Bauteilen (bis zu 3kg), Schliffen bis hin zu mikroelektronischen Bauteilen
- REM-Untersuchung von nichtleitenden Bauteilen ohne zusätziche Bedampfung (z.B. keramische Bauteile, Metall/Kunststoffverbunde)
- Lokale chemische und kristallographische Analysen

3D Gefüge- und Konturanalysen

Hochauflösende 3-dimensionale Darstellung und Vermessung von Konturen oder Gefügeebestandteilen

Ansprechpersonen

Bernhard Sartory T +43-676 848883 129



Dr. Angelika Spalek T +43-676 848883 201

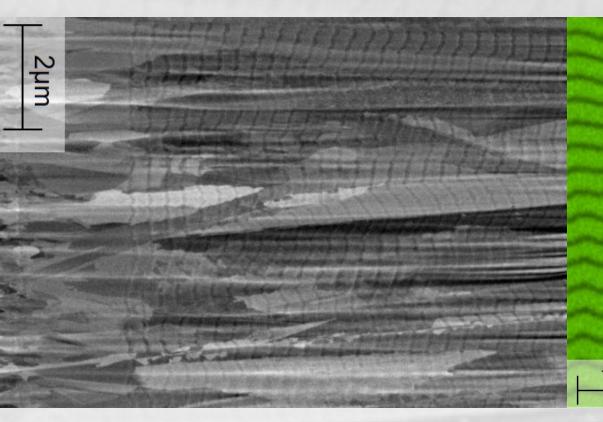
Unsere Schwerpunkte / Kompetenzen

- 3D-Topographie von Konturen, Schädigungen u.ä. inkl. Vermessung im mm bis subum Bereich.
- 3D- Tomographie von Gefügebestandteilen durch die Slive&View-Methode inkl. Vermessung der lokalen Chemie und Struktur.
- Unterschiedliche Elektronen- und Ionen-Kontrastes, EBSD Kristallinformationsmessung, 3D chemische Elementverteilungen und Tiefenprofilen (EDX, EBSD und FIB-SIMS (TOF))

Hochauflösende Elektronenmikroskopie

Hochauflösende Gefügecharakterisierung

Ansprechpersonen



Dr. Angelika Spalek T +43-676 848883 201

Unsere Schwerpunkte / Kompetenzen

- Hochauflösende Gefügecharakterisierung mit Auflösungen bis zu 1.000.000x.
- Unterschiedliche Elektronen- und Ionen-Kontrastes, EBSD Kristallinformationsmessung
- Messung der Kristallstruktur mittels EBSD vom cm Bereich bis hin zu 20-30nm kleinen Strukturen
- Vermessung der lokalen chemischen Zusammensetzung sowie Elementverteilungen und Partikelanalysen (EDX, WDX, RFA, FIB-SIMS (TOF))

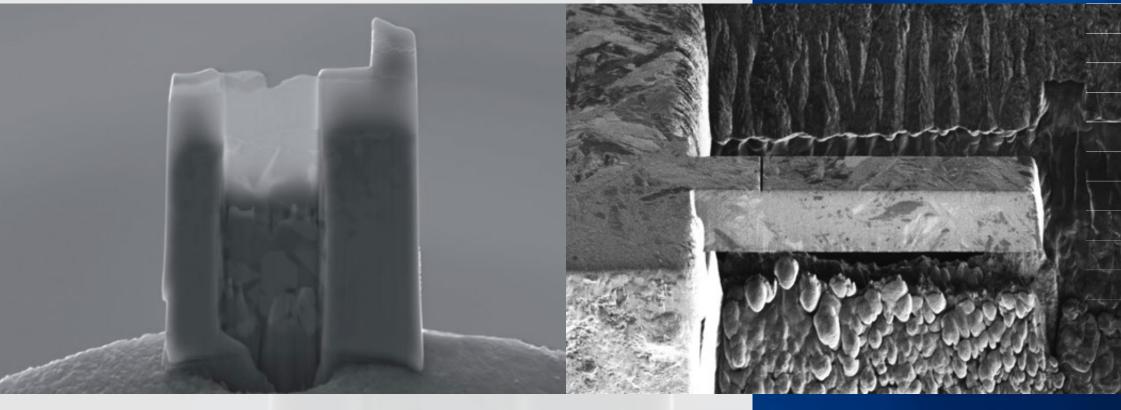
Präzise chemische und strukturelle Analysen

1µm

Präzise chemische und strukturelle Analyse von feinsten Strukturelementen bis zu wenigen 10nm Größe.

Ansprechpersonen

Bernhard Sartory T+43-676 848883 129



Dr. Stefan Marsoner T+43-676 848883 102

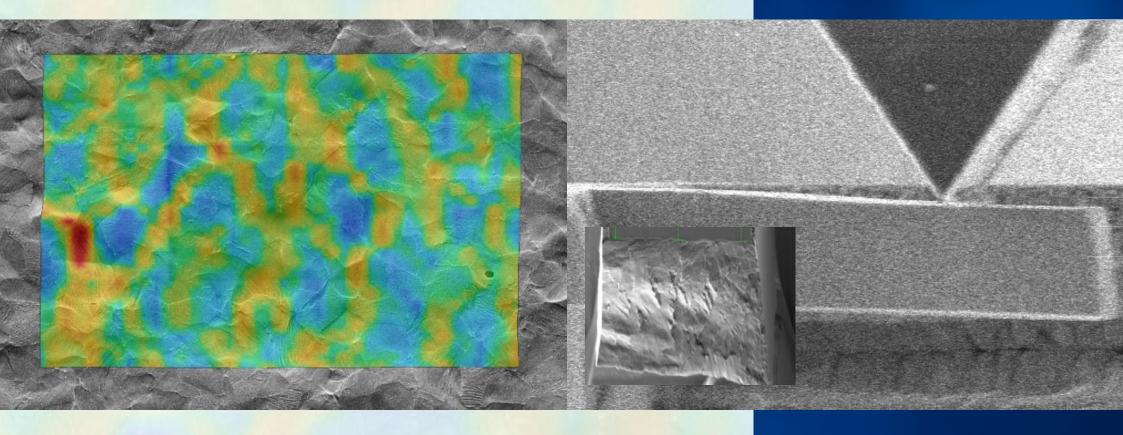
Unsere Schwerpunkte / Kompetenzen

- Präzise chemische Analysen mittels EDX, WDX und RFA
- Hoher Energieauflösung mit Nachweisgrenzen von 50-100 ppm
- Spurenelementanalysen bis zu Nachweisgrenzen von 10ppm
- EBSD Messungen weniger 10nm großer Körner zur Identifikation der Gefüge- bzw. Kristallstrukturen
- FIB-SIMS (TOF) Flächen Messungen oder Tiefenprofile mit einer lateralen Auflösung von wenigen Nanometern von Hauptelementen bis hin zu Spurenanalysen

Focused Ion Beam - Micromachining

Probenherstellung für mikromechanische und mikrostrukturelle Untersuchungen

Ansprechpersonen


Dr. Angelika Spalek T +43-676 848883 201

Unsere Schwerpunkte / Kompetenzen

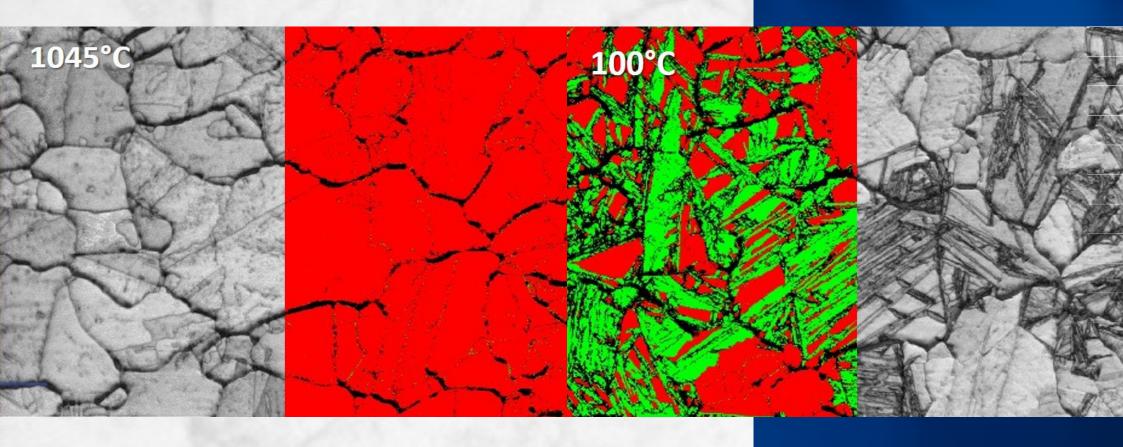
- Zielpräparation von Dünnfolien für nachfolgende elektronenmikroskopische und transmissionselektronenmikroskopische Untersuchungen (*)
- Zielpräparation von Atomsondenspitzen für nachfolgende Atomsondenuntersuchungen
- Herstellung von Proben für mikromechanische Prüfung von Werkstoffen (z.B. von dünnen Schichten oder Gefügekomponenten)

*weiterführende TEM-, APFIM-Analysen werden in Kooperation mit Forschungspartnern des MCL durchgeführt

Insitu - Mikromechanische Untersuchungen

Ermittlung mikromechanischer Eigenschaften von Gefügekomponenten oder Schichten

Ansprechperson



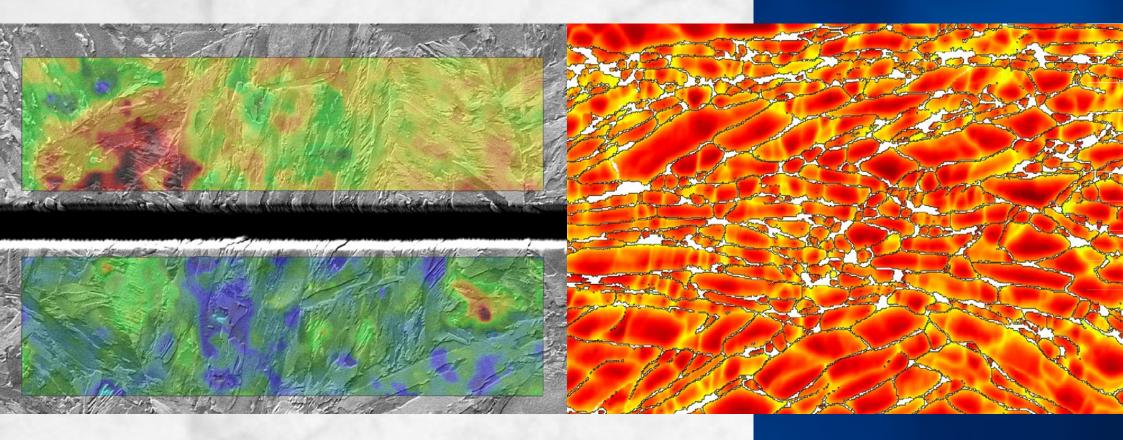
Bernhard Sartory T+43-676 848883 129

Unsere Schwerpunkte / Kompetenzen

- Härteprüfung einzelner Gefügefraktionen
- Insitu-Zugversuch zur Beobachtung lokaler Dehnungsänderungen
- Insitu-Härteprüfung mittels Nanoindentor, Aufnahme von Fließkurven und Bestimmung des E-Moduls
- Insitu statische und zyklische Materialprüfung mittels Nanoindentor. Ermittlung von Bruchund Ermüdungseigenschaften
- Prüfung von Scherwiderständen an Grenzflächen (z.B. Interface einer Beschichtung)

Insitu - Temperatur-Umwandlungs-Analytik

Hochauflösende Dokumentation der Umwandlungskinetik einzelner Phasenfraktionen.

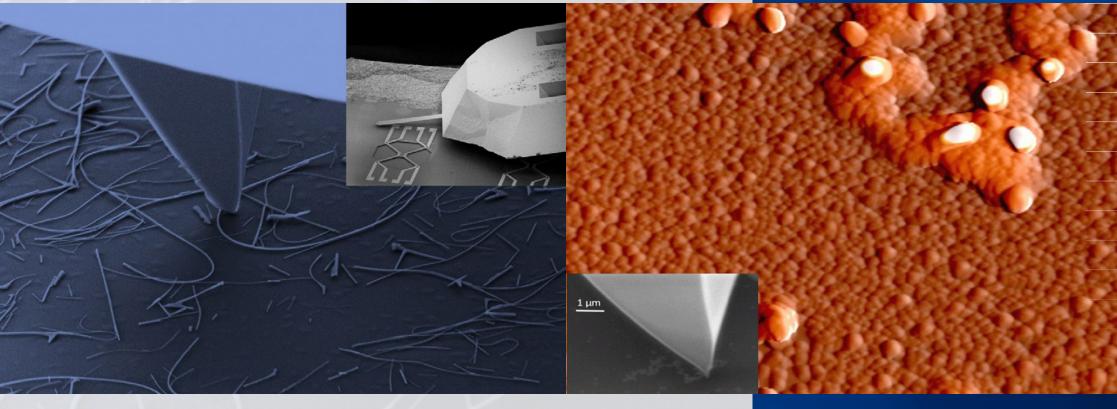

Ansprechperson

Unsere Schwerpunkte / Kompetenzen

- Insitu Heiz- und Kühlexperimente im Rasterelektronenmikroskop.
- Temperaturbereich -180°C bis 1045°C
- Heizraten:-180°C bis 400°C max. 20°C/min
 250°C bis 1045 °C max. 250°/min
- Temperaturabhängige Eigenspannungsmessung an Beschichtungen.
- Analytik mit unterschiedlichen Detektoren (u.a. EBSD).

Eigenspannungsmessungen mittels Elektronenmikroskopie

Bestimmung von globalen und lokalen Eigenspannungen an Bulkmaterialien sowie von Beschichtungen mit einer lateralen Auflösung von bis zu 10nm


Ansprechperson

Unsere Schwerpunkte / Kompetenzen

- Messung von Eigenspannungen und Eigenspannungstiefenprofilen von Beschichtungen mit einer Tiefenauflösung von bis zu 10nm
- Temperaturabhängige Eigenspannungsmessungen von mikroelektronischen Schichten zwischen -180°C und +400°C
- 2D Eigenspannungsverteilungen von kristallinen Materialien in einer Genauigkeit von wenigen 10nm inkl. Versetzungdichtenanalyse
- Eigenspannungstiefenprofile an bearbeiteten Blechen, Drähten und sonstigen Oberflächen

Ex-/Insitu-AFM Messungen

Bestimmung von lokaler elektrischer, thermischer und magnetischer Eigenschaften und Oberflächentopographien.

Ansprechpersonen

Dr. Barbara Kosednar-Legenstein T+43-676 848883 129

Bernhard Sartory T+43-676 848883 129

Unsere Schwerpunkte / Kompetenzen

- Topographie / Rauigkeit
- KPFM zur Bestimmung lokaler elektrischer Eigenschaften von Korn bzw. Gefüge Komponenten
- SThM zur Bestimmung der thermischen Leitfähigkeit von Körnern bzw. Gefüge Komponenten
- EBIC zur Bestimmung lokaler elektrischer Eigenschaften und Kurzschlüssen/Unterbrechungen
- MFM zur Bestimmung lokaler magnetischer Eigenschaften (z.B.: Restaustenit)
- STM zur Darstellen der Atome bzw. des Atomgitters
- C-SPM zur Messung der elektrischen Eigenschaften wie Widerstand oder Leitfähigkeit

Leistungsangebot

- REM-Charakterisierung von Oberflächen, Bruchflächen, Schädigungen und Schliffen inkl. lokaler chemischer Zusammensetzung
- Werkstoffuntersuchungen bis hin zur 3D-Gefügetopographie und -tomographie mit Hilfe der REM-FIB Technologie.
- Zielpräparation von TEM-Dünnfolien, Atomsondenspitzen für weiterführende hochauflösende Un-tersuchungen
- Herstellung von Mikroproben für mechanische in-situ-Versuche mit verschiedenen Geometrien (z.B. Quader, Zylinder oder Mikrozugproben und Biegebalken)
- Untersuchung der TEM-Proben im Durchstrahlungsmodus (STEM) inkl. chemischer und kristallographischer Analytik
- Einbringung kleiner rissähnlicher Defekte (im sub-µm bis µm-Bereich) zum Studium des Verhaltens kurzer Riss
- Lokale und tiefenaufgelöste Eigenspannungsmessungen
- Hochtemperatur Untersuchungen in Kombination mit EBSD
- Ermitteln von physikalischen Kennwerten in Kombination der Module und Analytik
- SPM-SEM Kombination in Kombination verschiedener Module
- Ein- bis mehrtägige vor-Ort-Schulungen im Bereich Elektronenmikroskopie, Focused Ion Beam und korrelative Mikroskopie

Anlagenausstattung

- Rasterelektronenmikroskop mit großer Probenkammer der Fa. Zeiss Typ EVO MA25[®] u.a. für die Analyse von nichtleitenden und verunreinigten Proben
- Dual Beam System, FE-REM (Zeiss CrossBeam® 550) inkl. Focused Ion Beam (FIB)
- Hochauflösendes FE-REM (Zeiss Gemini®-SEM 450) zur Abbildung von Strukturen mit wenigen nm und präziser chemischer Analyse
- Modul-REM (Zeiss CrossBeam®-SEM 340) mit
- Zug-/Druck-/Biege-Modul
- Nanoindenter
- (Hochtemperatur-) Heiz-/Cryomodul
- AFM
- Aufnahmetechniken und Analytik: SE-, BSD-, STEM-, Sekundärionen-, InLens- und EBSD-Detektor, EDX, WDX, ED-XRF, WD-XRF, EBSD, STEM, TKD (Transmission EBSD), FIB-SIMS (TOF)
- Ionslicer für die Probenpräparation (Flatmilling, Cross Sectioning)
- Bedampfung mit unterschiedlichen Substanzen (Graphit, Platin,...) zur Ladungskompensation und Analyse von nichtleidenden Proben

